第六百三十章 历史:飞啊飞啊飞(上)(1 / 2)

加入书签

“......矢量的规范玻色子?”

听到徐云的这句话。

原本就将注意力放在徐云身上的赵忠尧等人,不由下意识的齐齐一愣,眼下浮现出了一抹茫然。

这是啥意思?

众所周知。

物理学中按照大分类划分可以分出两种基本粒子,也就是所谓的费米子和玻色子。

其中费米子是遵循费米-狄拉克统计的粒子,包括电子、质子、中子等等。

费米子有半整数自旋,符合泡利不相容原理,即同一量子态上不能有两个或以上的费米子。

玻色子则是遵循玻色-爱因斯坦统计的粒子,包括光子、W玻色子、Z玻色子、希格斯玻色子等,它们是构成力的基本粒子。

玻色子有整数自旋,不受泡利不相容原理的限制,多个玻色子可以处于同一量子态上。

当然了。

在如今这个物理学的早期时代,科学界对于这两种粒子的认知还远远没有后世那么完善。

其中费米子的了解相对要深一点,毕竟质子中子这些微粒已经被发现有些年了,甚至直接或者间接诞生过不少诺贝尔奖。

但玻色子就要浅很多了。

玻色子这个概念最早由狄拉克所提出,当时他为了纪念印度物理学者萨特延德拉·纳特·玻色的贡献,便给这种粒子取了个玻色子的名字。

这个时代对玻色子最典型的认知就是光子,然后就仅此而已了。

没错,后续就没了。

因此当徐云提出了【带着矢量的规范玻色子】后,赵忠尧等人非但没有丝毫恍然大悟,反倒有些懵逼。

过了片刻。

赵忠尧与一旁的胡宁彼此对视了一眼,略微组织了一番语言,对徐云问道:

“小韩,你说的这矢量规范玻色子....到底是个啥意思?”

“难道说除了矢量玻色子外,还有标量玻色子?”

徐云朝他点了点头,肯定道:

“没错。”

赵忠尧顿时皱起了眉头,不过他并没有打断徐云的节奏。

根据他过去这段与徐云打交道所积累的经验。

徐云这人虽然经常抛出一些语不惊人死不休的概念,但这些概念无论多么超乎现有的认知,徐云都会对它们做出一个比较详尽的解释,几乎从未出现过抛概念但不给原理的情况。

这也是为啥基地这么多专家会这么快接纳徐云的原因——搞理论的语出惊人不是啥大问题,只要能给出合理的解释就行。

眼下这个时期仪器水平相当原始,理论学家基本上和古代的说客无异,能够驳辩说服他人的就是顶尖的纵横家。

果不其然。

徐云这次也没怎么卖关子,而是很快拿起笔,在纸上写下了一道公式;

ds2=c2dt261dx261dy261dz2=ημνdxμdxν。

接着徐云在这道公式下方画了条线,对赵忠尧说道:

“赵主任,这是一个标准的闵氏时空的线元,拥有一个RΛ4线性空间,配有号差为+2的闵氏度规ημν。”(谁能告诉我四次方搜狗怎么打....)

“如果我们做一个假设,即单粒子态的算符只取决于延迟时刻的位置和速度,您能做出SO(3)群的不可约幺正表示吗?”

“.......”

赵忠尧闻言思考的了几秒钟,很快摸了摸下巴:

“应该可以。”

上辈子是洛伦兹的同学应该都知道。

自由场情景下洛伦兹变换不改变场的形式,矩阵D决定了场的变换方式,所以只要考虑群的性质就可以了。

而W又是小群,对于有质量粒子场想要做出SO(3)群的不可约幺正表示,只要考虑右边的湮灭算符就行。

这种计算对于赵忠尧这样的大佬来说并不算什么难题,因此很快赵忠尧便写下了对应的步骤:

“先从动量算符入手,p^=61i67dd.....”

“当湮灭算符作用在基态上时得到零,即  a61ψa=0,因子67267mω可以约掉......”

“然后再做出无量纲化的共轭复振幅算符,它的时间演化就是乘上eiωt相位变化......”

十多分钟后。

赵忠尧轻轻放下笔,露出了一道若有所思的表情:

“咦....谐振子居然有两个解析解?”

随后他又看向了一旁同时在计算的胡宁和朱洪元二人,问道:

“老胡,洪元同志,你们的结果呢?”

胡宁朝他扬了扬手中的算纸:

“我也是两个解。”

朱洪元的答案同样简洁:

“我也是。”

见此情形,老郭不由眯了眯眼睛。

他所计算的是SO(1)和SO(3)群的粒子数算符,虽然前置条件是单粒子态的算符只取决于延迟时刻的位置和速度,但这个假设其实和现实几乎无异。

而根据计算结果显示。

这个模型在数学上具备两个解析解,对应的是量子所述的玻色子规范场。

其中一个解析解对应的自旋为1,另一个解析解对应的自旋则为0。

而自旋为零在场论中对应的便是.....

标量概念。

这其实很好理解。

量子场论中使用的的自然单位进行计算,真空中的光速c=约化普朗克常数67=1,时空坐标x=(x69,x60,x61,x62)=(x,y,z,it)=(X,it),偏微分算符68=(6869,6860,6861,6862)=(68/68x,68/68y,68/68z,68/i68t)=(68,-i68t)=(▽,-i68/68t)

狭义相对论的能量动量关系式是E05=  P05+  m05,让能量E用能量算符i68/68t替换,动量P用动量算符63i▽替换,就可以得到-6805/68t05=-▽05+  m05,即▽05-6805/68t05-m05=0

让它两边作用在波函数Ψ上得(6805-m05)Ψ=0,这就是大名鼎鼎的克莱因-戈登场方程。

算符6805在洛伦兹变换下是四维标量,即68'05=6805静质量的平方m05是常数。

要使克莱因-戈登场方程具有洛伦兹变换的协变,即将方程(6805-m05)Ψ=0时空坐标进行洛伦兹变换后得到的(68'05-m05)Ψ'=0形式不变,唯一要求就是洛伦兹时空坐标变换后的波函数Ψ'=Ψ就达到目的了,这样的场叫标量场。

如果让洛伦兹变换特殊一点,保持时间不变,而在空间中旋转,这样旋转后的波函数Ψ'(X',t)=exp(-iS·α)Ψ(X,t)。

这就是说在时间t不变的情况下,波函数Ψ(X,t)的空间坐标矢量X在角动量S方向旋转无穷小α角后变成矢量X'。

而波函数Ψ(X,t)变成exp(-iS·α)Ψ(X,t)=Ψ'(X',t),并且Ψ(X,t)=Ψ'(X',t)。

↑返回顶部↑

书页/目录