第317章 解决BSD猜想的思路!(2 / 2)

加入书签

准备要一鼓作气的解决BSD猜想。

回到家里之后,周易简单的给夏雪说明了事情经过之后,

夏雪柔声道:

“每天我会按时把饭菜送到书房的,记得按时吃饭。”

周易说道:慻/span

“恩。”

决定闭关之后,周易一个人单独的呆在了书房。

之前的资料与文献,通通被牡丹投影了出来,

周易看着屏幕,一边用笔写写画画。

设α和b是整数,4a^3+27b^2≠0,

方程E:  y2=x^3+ax+b叫作定义在有理数域Q上的一条椭圆曲线。

以E(Q)表示此曲线上的全部有理数点加上一个无穷远点,可以在其上引入一个加法运算使E(Q)为交换群。慻/span

关于那椭圆曲线,周易随手写在了草稿纸之上,

“当初英国数学家Mordell于1922年证明了群E(Q)是有限生成的,从而有了直和分解E(Q)=E(Q)_f+E(Q)_t。”

一连数天,周易都没有进度,这让周易有些着急。

但是急也没用,有时候灵感不来,就是没有办法。

周易暂时放缓了一下进度,在院子里晒晒太阳。

时不时与梅纳德打个电话联系一下,探讨一下。

梅纳德也是数论领域的专家,拿过菲尔兹奖的人,慻/span

与他们多交流,也许能够碰撞出一点火花。

这一天,梅纳德在周易家院子里与周易说道:

“既然周易你现在有些卡壳,不如研究一下与BSD有联系的有一个古老的数论问题,叫作同余数(congruent  number)问题。”

周易听完,带着一丝疑惑的语气说道:

“同余数问题!?”

梅纳德说道:

“从这个问题入手,看能找到一丝灵感不?”慻/span

随即梅纳德简单的介绍说道:

“一个正整数n叫做同余数,是指n是三边a,b,c均为有理数的直角三角形的面积。”

说到了这里,梅纳德拿起了一支粉笔在院子的黑板上写到,

“周教授,你看这里,”

【n=6和5为同余数,因为(a,b,c)可分别取(3,4,5)和(3/2,20/3,41/6)。】

梅纳德写完继续说道:

“所以不难看出,对每个正整数m,  m^2n是同余数当且仅当n是同余数,从而不妨假设n是无平方因子的正整数。慻/span

同余数问题即是决定出全部同余数。”

周易听到这里也知道梅纳德的意思,说道:

“也就是说其余正整数就是非同余数。”

梅纳德暗叹周易的天赋恐怖,说道:

“是这样的,周教授。

这个问题起源于公元11世纪的阿拉伯,至今已决定出许多同余数和非同余数,但是整个问题没有完全解决。”

听到了这里,周易眼眸之中散发着一丝光彩,带着极其自信的语气说道:慻/span

“那么我们瞬间可以知道,同余数问题与椭圆曲线之间的联系是:

n为同余数当且仅当椭圆曲线En:y2=x^3-  n^2x的秩≥1,即此方程有无穷多有理数解。”

梅纳德眼眸之中带着震惊的神色,说道:

“没错周教授,就是这个意思,或许华科院田野教授当初的文章可以看一看,

当年2022年在国际数学家大会田野教授还对于这个问题与BSD猜想作了45分钟报告。”

不多时,周易直接投影出了这篇文章。

《同余数问题与椭圆曲线》,还是送给杨乐院士80大岁的礼物。慻/span

周易暗骂自己竟然忽略这篇文章。

要知道田野教授在BSD猜想领域有着不俗的见解。

说不定未来某一天就能解决BSD猜想,但是现在周易竟然选择了,

那么只有对不起研究这个猜想的所有同行了。

这么多年都没有研究出来,合该自己来解决它。

“梅纳德,多谢了。”

周易十分郑重的说道。慻/span

梅纳德唏嘘道:

“只是你之前忙六代机忙晕了而已,不然不可能注意不到。”

第六代战斗机需要的东西,克服的难度,完全不会比一个千禧难题低。

周易一时间忙晕了头,不知道也在情理之中。

周易还是坚持说道:

“谢谢,我有把握解决这个问题。”

梅纳德说道:慻/span

“那好,我就不打扰你了,数学所有孙崧院士与我们照看着,出不了什么大问题。”

周易说道:

“好。”

送梅纳德离开之后,周易立马回到了自己的房间开始闭关,看起了田野教授的论文。

周易一边看,一边嘴上忍不住说道:

“这篇文章只是证明同余数问题的弱Goldfeld猜想,而Goldfeld猜想并未有得到全部的解决,

不过田野教授已经铺平了道路,如果与周氏解析法,必然是能够彻底解决Goldfeld猜想。”慻/span

周易眼中露出了精光,手中奋笔疾书。

所谓的Goldfeld猜想是在所有使得03(n)=+1(分别地,611)的无平方因子的正整数n中,存在一个密度为1的子集,使得当n在这个子集中时,

ords=1L(E^(n),s)=0(分别地,=1)。

而密度的概念定义也被田野教授写了出来,

如果D是一个正整数的子集,D′是D的一个子集,则D′在D中的密度是指下面的极限(如果这个极限存在的话),

lim_(N到+∞)((#{n∈D′|n

看到了这里,周易嘴上说道:慻/span

“如果不要求子集的密度为1,而只是要求正密度,则立马可以写出弱Goldfeld猜想。”

在所有使得03(n)等于+1(分别地,611)的无平方因子的正整数n中,存在一个正密度的子集,使得当n在这个子集中时,ords=1L(E^(n),s)=0(分别地,=1)。

周易手中的笔立马在草稿纸上写了出来,甚至都不用看田野教授的后文。

这便是周易到如今积累下来的数学功底,也可以说成是数学天赋。

随后周易一边看,一边自己写。

看一步写十步,

这篇田野教授的证明论文,周易基本上本人证明了一遍。慻/span

从下午到晚上,周易甚至都没来得及吃饭。

在草稿纸上写了接近二十张A4纸。

“与田野教授的证明方法倒是没错,不过要是结合周氏解析法,可能会缩短其中的步骤。

只可惜当初我的周氏解析法还没问世,当初田野教授写这篇论文的时候是在19年。”

周易伸了一个懒腰,对于完整的Goldfeld猜想已经有了一个具体的想法。

也许半个月之内可以彻底解决Goldfeld猜想,进而解决BSD猜想。

周易感叹,田野教授对于BSD猜想的研究之深,看来自己要捡个便宜了。慻/span

这么久田野教授都没消息,自己也却之不恭了。

学术界就是这么残酷,不一定谁先来谁就可以解决这些世纪难题,

而是看运气,看天赋!

...

PS:这里参考文献主要是田野教授的论文,有兴趣去翻一下。

↑返回顶部↑

书页/目录