第212章 研讨(2 / 2)

加入书签

        面对世界召开的哥德巴赫猜想学术报告会,还是在人民大会堂召开,上升到国家层面,吴桐虽然心里底气很足,但是狮象搏兔亦用全力,谨严第一,她依然想要精益求精,自然心存慎重,一直提着那份心劲儿。

        直至昨日,报告会成功召开,以超出她预料的,圆满落幕,吴桐了乐这桩心事,心态自然放松下来。借来半日闲暇,吴桐应了师长的嘱咐,真切的休息,倚在阳台的躺椅上,享受着春日暖阳,难得的闲暇,心情十分美好。

        带着美好愉悦的心情,吴桐出门,赶赴下午的研讨会。和一众相熟的前辈相继问候打过招呼,大家在预约好的会议室入座,与会者,无不是国家数学界顶尖大牛,菲奖得主比比皆是,阿贝尔、沃尔夫其他各种重要奖项得主更是叠加累计不在少数。

        <div  class="contentadv">        安德鲁·怀尔斯和更为年长的朗兰兹是本次研讨会的组织者,两人率先发言,简单的开场,点明本次研讨会的主旨,为了数学新进步。

        “入乡随俗,中华有个词语,叫做抛砖头引玉石,我先来说说。在对吴的成果研究学习时,我有一个特殊发现,吴很重视搭桥。她总是以,巧妙地搭桥构造,做出让我们一而再惊叹的成果,利用所创造的桥,将彼此不相连的范围连通,让我们在数学真正大一统的道路上,有了更新的辅助!”

        “以桥相连,串通所有,我在朗兰兹纲领中,有过初步运用。在我提出这个纲领之前,先辈们其实已经有了初步研究。半单李群的结果和方法,塞尔伯格等的塞尔伯格迹公式,我在函子性的基础上,提出上述理论与数论的直接联系,以及其构想中丰富的总体结构···”

        朗兰兹接着阐述,他的毕生,都投注给了朗兰兹纲领,期待见证数学大一统的诞生。

        紧接着德利涅、费曼,甚至是爱德华威滕都相继发言,主位上,两位学术界的大前辈,把期待的目光投向吴桐。

        吴桐也没含糊,轻轻颔首与一众人致礼后,接着刚才的讨论开口:“任何对某一半单(或约化)李群可能做的,应对所有都做。

        故一旦认清一些低维李群—如  GL2—在模形式理论之角色,并反观  GL1在类域论之角色,我们至少可推测一般  GLn的情况。

        尖点形式之念头来自模曲线上的尖点,在谱理论上对应于离散谱;对比之下连续谱则来自艾森斯坦级数。但当给定的李群越大,则抛物子群越多,技术上则越复杂。

        在此等研究途径中不乏各种技巧——通常基于列维分解等事实、具诱导表示的性质——但这领域一直都很困难。

        在模形式方面,亦有例如希尔伯特模形式、西格尔模形式和theta-级数等等面向···”

        “当找到适当的狄利克雷L-函数的推广,便有可能推广阿廷互反律,上半复平面上、满足某些函数方程的全纯函数与狄利克雷L函数。以应用于Q-阿代尔环上一般线性群GLn的某类无限维不可约表示····!”

        “每一来自给定数域的伽罗瓦群的有限维表示的阿廷  L-函数,都相等于某一来自自守尖点表示的L-函数!”

        热烈的讨论,你来我往,碰撞的思维火花,在其中诞生,让与会者深感收获,吴桐的敏锐,和广阔的知识储备,再次让一众人深深佩服。

↑返回顶部↑

书页/目录